top of page

研究内容について

遺伝子改変技術で未知の遺伝子機能の解明や疾患の克服に挑戦します。

1.遺伝子改変動物の作出

新たな遺伝子を持たせたトランスジェニック動物や、

特定の遺伝子を欠損したノックアウト動物を作出し、

未知の遺伝子機能を探索します。

2.生殖器におけるFXRの機能解明

代謝制御主要因子と呼ばれるFXRの、

生殖器における機能を探索します。

3.神経変性疾患モデルマーモセットの作出

現在、根本的な治療法がない神経変性疾患のモデル動物を作出し、

治療薬や治療法の確立、疾患バイオマーカーの開発を目指します。

4.​成体卵巣内の未発育卵胞培養法の確立

胎子や新生子の未発育卵胞の培養に成功していますが、成体動物

卵巣内の未発育卵胞を発育させる技術は未だ確立されていません。

成体卵巣の未発育卵胞培養技術が確立できれば、家畜の増産や

改良、絶滅危惧種の保全や遺伝子資源の確保に貢献できます。

5. ヒト生殖医療への貢献

女性不妊の原因として、早期卵巣機能不全(POI)や

多嚢胞性卵巣症候群(PCOS)が挙げられます。

基礎研究で得られた成果を展開し、生殖関連疾患の治療へ応用を目指します。

研究業績

論文

Genistein enhances NAD+ biosynthesis by upregulating nicotinamide phosphoribosyltransferase in adipocytes

Watanabe S, Haruyama R, Umezawa K, Tomioka I, Nakamura S, Katayama S, Mitani T. J Nutr Biochem, 28:109433, 2023.

Optimization of piggyBac transposon-mediated gene transfer method in common marmoset embryos

Nanami Kohri,Mitsuo Ota,Hikaru Kousaku,Eiko N. Minakawa,Kazuhiko Seki,Ikuo Tomioka. PLOS ONE, 18(6):e0287065. 2023.

In vitro production of viable eggs from isolated mouse primary follicles by successive culture

Tomohiro Kohama, Maika Masago, Ikuo Tomioka, Kanako Morohaku. 
Journal of Reproduction and Development, vol68, issue: 1, pages:38-44, 2022.

Generation of Common Marmoset Model Lines of Spinocerebellar Ataxia Type 3.

Ikuo Tomioka, Yoshitaka Nagai, Kazuhiko Seki. Front Neurosci. 2020, 24;14:548002. doi: 10.3389/fnins.2020.548002. eCollection 2020.

Highly efficient induction of primate iPS cells by combining RNA transfection and chemical compounds

Watanabe T, Yamazaki S, Yoneda N, Shinohara H, Tomioka I, Higuchi Y, Yagoto M, Ema M, Suemizu H, Kawai K, Sasaki E
Genes to Cells, 2019

Evidence for involvement of FXR signaling in function of ovarian granulosa cells

Takae K, Nakata M, Watanabe T, Sasada H, Fujii H, Tomioka I
Journal of Reproduction and Development, vol.65, issue:1, page:47-55, 2019

Developing biomarkers for neurodegenerative diseases using genetically-modified common marmoset models

Ikuo Tomioka, Yoshitaka Nagai, Kazuhiko Seki
Neural Regeneration Research, vol.13, issue:7, page:1189-1190, 2018

Generation of transgenic marmosets using a tetracyclin-inducible transgene expression system as a neurodegenerative disease model

Tomioka I, Nogami N, Nakatani T, Owari K, Fujita N, Motohashi H, Takayama O, Takae K, Nagai Y, Seki K
Biology of Reproduction, vol.97, issue:5, page:772-780, 2017

Transgenic monkey model of the polyglutamine diseases recapitulating progressive neurological symptoms

Ikuo Tomioka, Hidetoshi Ishibashi, Eiko Minakawa, Hideyuki Motohashi, Osamu Takayama, Yuko Saito, H. Popiel, Sandra Puentes, Kensuke Owari, Terumi Nakatani, Naotake Nogami, Kazuhiro Yamamoto, Satoru Noguchi, Takahiro Yonekawa, Yoko Tanaka, Naoko Fujita, Hikaru Suzuki, Hisae Kikuchi, Shu Aizawa, Seiichi Nagano, Daisuke Yamada, Ichizo Nishino, Noritaka Ichinohe, Keiji Wada, Shinichi Kohsaka, Yoshitaka Nagai, and Kazuhiko Seki
eNeuro, 4(2) e0250-16, 2017.

Birth of common marmoset (Callithrix jacchus) offspring derived from in vitro-matured oocytes in chemically defined medium.

Tomioka I, Takahashi T, Shimada A, Yoshioka K, Sasaki E. Theriogenology, 78(7):1487-1493, 2012.

Efficient Derivation of Multipotent Neural Stem/Progenitor Cells from Non-human Primate Embryonic Stem Cells.

Shimada H, Okada Y, Ibata K, Ebise H, Ota S, Tomioka I, Nomura T, Maeda T, Kohda K, Yuzaki M, Sasaki E, Nakamura M, Okano H. PROS ONE, 7(11):e49469, 2012.

Derivation of induced pluripotent stem cells by retroviral gene transduction in Mammalian species.

Imamura M, Okuno H, Tomioka I, Kawamura Y, Lin ZY, Nakajima R, Akamatsu W, Okano HJ, Matsuzaki Y, Sasaki E, Okano H. Methods Mol. Biol., 925:21-48, 2012.

Gene targeting and subsequent site-specific transgenesis at the β-actin (ACTB) locus in common marmoset embryonic stem cells.

Shiozawa S, Kawai K, Okada Y, Tomioka I, Maeda T, Kanda A, Shinohara H, Suemizu H, Okano J, Sotomaru Y, Sasaki E, Okano H. Stem Cells Dev., 20(9):1587-1599, 2011.

Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28.

Tomioka I, Maeda T, Shimada H, Kawai K, Okada Y, Igarashi H, Oiwa R, Iwasaki T, Aoki M, Kimura T, Shiozawa S, Shinohara H, Suemizu H, Sasaki E, Okano H. Genes to Cells, 15:959-969, 2010.

Generation of transgenic non-human primates with germline transmission.

Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T. Nature, 459: 523-527, 2009.

In Vitro Induction of Potential Primordial germ cells from mouse embryonic stem cells by culture with undifferentiated gonadal cells.

Tomioka I, Honma Y, Sasada H, Sato E. Journal of Mammalian Ova Reseach, 25:37-43, 2008.

Freezability of rat epididymal sperm induced by raffinose in modified Krebs-Ringer bicarbonate (mKRB) based extender solution.

Yamashiro H, Han YJ, Sugawara A, Tomioka I, Hoshino Y, Sato E. Cryobiology, 55(3):285-294, 2007.

Spindle formation and microtubule organization during first division in reconstructed rat embryos produced by somatic cell nuclear transfer.

Tomioka I, Mizutani E, Yoshida T, Sugawara A, Inai K, Sasada H, Sato E. Journal of Reproduction and Development, 53(4):835-842, 2007.

Development of rat tetraploid and chimeric embryos aggregated with diploid cells.

Shinozawa T, Sugawara A, Matsumoto A, Han YJ, Tomioka I, Inai K, Sasada H, Kobayashi E, Matsumoto H, Sato E. Zygote, 14:287-97, 2006.

Determination of optimal conditions for parthenogenetic activation and subsequent development of rat oocytes in vitro.

Mizutani E, Jiang JY, Mizuno S, Tomioka I, Shinozawa T, Kobayashi J, Sasada H, Sato E. Journal of Reproduction and Development, 50:139-146, 2004.

Differential effect of recipient cytoplasm for microtubule organization and preimplantation development in rat reconstituted embryos with two-cell embryonic cell nuclear transfer.

Shinozawa T, Mizutani E, Tomioka I, Sasada H, Matsumoto H, Sato E. Molecular Reproduction and Development, 68:313-318, 2004.

Bax Inhibiting Peptide (BIP) designed from mouse and rat Ku70.

Yoshida T, Tomioka I (Equal contributor), Nagahara T, Holyst T, Sawada M, Hayes P, Gama V, Okuno M, Chen Y, Abe Y, Kanouchi T, Sasada H, Wang D, Yokota T, Sato E, Matsuyama S. Biochemical and Biophysical Research Communications, 321:961-966, 2004.

bottom of page